SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks

نویسندگان

  • Patrick W. Sheppard
  • Muruhan Rathinam
  • Mustafa Khammash
چکیده

SUMMARY SPSens is a software package for the efficient computation of stochastic parameter sensitivities of biochemical reaction networks. Parameter sensitivity analysis is a valuable tool that can be used to study robustness properties, for drug targeting, and many other purposes. However its application to stochastic models has been limited when Monte Carlo methods are required due to extremely high computational costs. SPSens provides efficient, state of the art sensitivity analysis algorithms in a single software package so that sensitivity analysis can be easily performed on stochastic models of biochemical reaction networks. SPSens implements the algorithms in C and estimates sensitivities with respect to both infinitesimal and finite perturbations to system parameters, in many cases reducing variance by orders of magnitude compared to basic methods. Included among the features of SPSens are serial and parallel command line versions, an interface with Matlab, and several example problems. AVAILABILITY SPSens is distributed freely under GPL version 3 and can be downloaded from http://sourceforge.net/projects/spsens/. The software can be run on Linux, Mac OS X and Windows platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of biochemical networks using COPASI.

Computational modeling and simulation of biochemical networks is at the core of systems biology and this includes many types of analyses that can aid understanding of how these systems work. COPASI is a generic software package for modeling and simulation of biochemical networks which provides many of these analyses in convenient ways that do not require the user to program or to have deep know...

متن کامل

In silico Biochemical Reaction Network Analysis (IBRENA): a package for simulation and analysis of reaction networks

SUMMARY We present In silico Biochemical Reaction Network Analysis (IBRENA), a software package which facilitates multiple functions including cellular reaction network simulation and sensitivity analysis (both forward and adjoint methods), coupled with principal component analysis, singular-value decomposition and model reduction. The software features a graphical user interface that aids simu...

متن کامل

Numerical modeling for nonlinear biochemical reaction networks

Nowadays, numerical models have great importance in every field of science, especially for solving the nonlinear differential equations, partial differential equations, biochemical reactions, etc. The total time evolution of the reactant concentrations in the basic enzyme-substrate reaction is simulated by the Runge-Kutta of order four (RK4) and by nonstandard finite difference (NSFD) method. A...

متن کامل

Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales

Stochastic models for chemical reaction networks have become very popular in recent years. For such models, the estimation of parameter sensitivities is an important and challenging problem. Sensitivity values help in analyzing the network, understanding its robustness properties and also in identifying the key reactions for a given outcome. Most of the methods that exist in the literature for ...

متن کامل

Formal approach on modeling and predicting of software system security: Stochastic petri net

To evaluate and predict component-based software security, a two-dimensional model of software security is proposed by Stochastic Petri Net in this paper. In this approach, the software security is modeled by graphical presentation ability of Petri nets, and the quantitative prediction is provided by the evaluation capability of Stochastic Petri Net and the computing power of Markov chain. Each...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 29 1  شماره 

صفحات  -

تاریخ انتشار 2013